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Preliminaries Free Probability

@ Let (M, ) be a von Neumann algebra with a faithful state:
non-commutative probability space.
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Preliminaries Free Probability

@ Let (M, ) be a von Neumann algebra with a faithful state:
non-commutative probability space.

@ Elements X € M are non-commutative random variables.
e Law of X, px: C[t] 3 p(t) — ¢(p(X)).
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Preliminaries Free Probability

Let (M, ¢) be a von Neumann algebra with a faithful state:
non-commutative probability space.

Elements X € M are non-commutative random variables.
Law of X, ¢x: C[t] > p(t) — ¢(p(X)).

For an N-tuple X = (X1,..., Xn), ©x:

C <t1, cee t/\/> S p(tl, ce tN) — gO(p(Xl, - ,XN)).
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Preliminaries Free Probability

Let (M, ¢) be a von Neumann algebra with a faithful state:
non-commutative probability space.

Elements X € M are non-commutative random variables.
Law of X, ¢x: C[t] > p(t) — ¢(p(X)).

For an N-tuple X = (X1,..., Xn), ©x:

C <t1, cee t/\/> ) p(tl, ce tN) — gO(p(Xl, - ,XN)).

All random variables in this talk will be self-adjoint and
non-commutative.
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o LetX=(X1,...,XN) C (M,ga) and Z = (Zl,.

7ZN) - (Lvdj)



Preliminaries Transport

o Let X = (X,...,Xn) C (M,¢) and Z = (Z, ..., Zn) C (L, ).
e Transport from ox to Yz is Y = (Y1,..., Yn) C W*(Xq,..., Xn) so
that

(p(p(yl, cey YN)) = ¢(p(21, .. .,ZN)) VpeC <I’17 R l’N> ;

that is, ¥z = Py.
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o Let X = (X,...,Xn) C (M,¢) and Z = (Z, ..., Zn) C (L, ).
e Transport from ox to Yz is Y = (Y1,..., Yn) C W*(Xq,..., Xn) so
that

(p(p(yl, cey YN)) = ¢(p(21, .. .,ZN)) VpeC <I’17 R l’N> ;

that is, ¥z = Py.
[ Implies (W*(Yl, ey YN), (p) = (W*(Zl, ey ZN),@Z)).
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Preliminaries Transport

o Let X = (X,...,Xn) C (M,¢) and Z = (Z, ..., Zn) C (L, ).
e Transport from ox to Yz is Y = (Y1,..., Yn) C W*(Xq,..., Xn) so
that

(p(p(yl, cey YN)) = ¢(p(21, .. .,ZN)) VpeC <I’17 R l’N> ;

that is, ¥z = Py.

] Implies (W*(Yl, ey YN), (p) = (W*(Zl, ey ZN), 77[))

@ And there is a state-preserving embedding of W*(Z3, ..., Zy) into
W*(Xi,..., Xn).
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Preliminaries Setup

o Let Hg = span{ey,...,en}, a real Hilbert space with (-, -), complex
linear in the second coordinate.
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o Let {U;: t € R} be a one parameter family of unitaries and let A be
their generator: A" = U,.
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Preliminaries Setup

o Let Hg = span{ey,...,en}, a real Hilbert space with (-, -), complex
linear in the second coordinate.

o Let {U;: t € R} be a one parameter family of unitaries and let A be
their generator: A" = U,.

e Can assume A = diag{A1,..., A, 1...,1} with

L/ M+ —iw =AY
A== k k k=1,...,L
K72 < M= A A ALt Vk=1...,

Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 4 /38



Preliminaries Setup

o Let Hg = span{ey,...,en}, a real Hilbert space with (-, -), complex
linear in the second coordinate.

o Let {U;: t € R} be a one parameter family of unitaries and let A be
their generator: A" = U,.

e Can assume A = diag{A1,..., A, 1...,1} with

L/ M+ —iw =AY
A== k k k=1,...,L
K72 < M= A A ALt Vk=1...,

@ Then spectrum(A) = {1,A1i1, AT AT = AL
(Alt)* — (AIt)T — A—It, and

N
S Al < max{1, A7 AT S IAL Wi=1,. N
j=1
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Preliminaries Setup

o Let Hc = Hr + iHgr and define
(X, y)y = Lx X,y €H
Y U — 1+A71 Y ) Y C-

Let H =T V.
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Preliminaries Setup

o Let Hc = Hr + iHgr and define
x,y)y = Lx X,y €H
Y U — 1+A71 Y ) Y C-

Let H =FH IV,
e The g-Fock space F4(H) is the completion of CQ & @72 ; H®" with
respect to the inner product

<fl®"'®fn7gl®"'®gm>U7q
= Op=m Z qi(ﬂ) <flag7r(1)>U T <fn7g7r(n)>u

TI’GSn
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Preliminaries Setup

o Let Hc = Hr + iHgr and define
x,y)y = Lx X,y €H
Y U — 1+A71 Y ) Y C-

Let H =FH IV,
e The g-Fock space F4(H) is the completion of CQ & @72 ; H®" with
respect to the inner product

<fl®"'®fn7gl®"'®gm>U7q
= Op=m Z qi(ﬂ) <flag7r(1)>U T <fn7g7r(n)>u

TI’GSn

e In particular, Fo(#) is the usual Fock space F(H).
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Preliminaries Setup

o For f € H we densely define the left q-creation operator
lg(f) € B(Fq(H)) by

I(F)Q = f
lf(Fg1® Qg =FRg Q- gn
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Preliminaries Setup

o For f € H we densely define the left q-creation operator
lg(f) € B(Fq(H)) by

I(F)Q = f
lf(Fg1® Qg =FRg Q- gn

e Its adjoint, the left g-annihilation operator, Iq(f)* is defined densely
by

I (F)* Q=0

n
L) a® - ®g.=> ¢ g a® Q& Qg
k=1
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Preliminaries Setup

o For f € H we densely define the left q-creation operator
lg(f) € B(Fq(H)) by

I(F)Q = f
lf(Fg1® Qg =FRg Q- gn

e Its adjoint, the left g-annihilation operator, Iq(f)* is defined densely
by

I (F)* Q=0

n
L) a® - ®g.=> ¢ g a® Q& Qg
k=1

o We let sq(f) = Iq(f) + I4(f)*, and
Fq(Hr, Up)" = W*(sq(f): f € H).
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Preliminaries Setup

e Q is cyclic and separating for ['4(Hg, Us)"” and hence the vector state
o(1) = (2, Q) , is a faithful, non-degenerate state (free quasi-free
state
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e Q is cyclic and separating for ['4(Hg, Us)"” and hence the vector state
o(1) = (2, Q) , is a faithful, non-degenerate state (free quasi-free
state

@ Throughout, M shall denote I'o(Hg, U;)” = W*(X1,...,Xn), with
Xj = so(ej)-
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Preliminaries Setup

e Q is cyclic and separating for ['4(Hg, Us)"” and hence the vector state
o(1) = (2, Q) , is a faithful, non-degenerate state (free quasi-free
state

@ Throughout, M shall denote I'o(Hg, U;)” = W*(X1,...,Xn), with
Xj = so(ej)-
@ With respect to the vacuum vector state ¢, the X; are centered

semicircular random variables of variance 1, but aren’t free unless
Ut - Id
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Preliminaries Setup

e Q is cyclic and separating for ['4(Hg, Us)"” and hence the vector state
o(1) = (2, Q) , is a faithful, non-degenerate state (free quasi-free
state

@ Throughout, M shall denote I'o(Hg, U;)” = W*(X1,...,Xn), with
Xj = so(ej)-

@ With respect to the vacuum vector state ¢, the X; are centered
semicircular random variables of variance 1, but aren’t free unless
U =id.

e Application of result: for small values of |q|, ['q(Hr, Ut)" is
isomorphic to M.
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Preliminaries Tomita-Takesaki theory

e Modular group: o7 (X;) = Zk [AZ]jx X for z € C
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Preliminaries Tomita-Takesaki theory

e Modular group: o7 (X;) = Zk [AZ]jx X for z € C
o Using the vector notation X = (X1,..., Xy) we have of(X) = AZX.
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Preliminaries Tomita-Takesaki theory

e Modular group: o7 (X;) = Zk [AZ]jx X for z € C
o Using the vector notation X = (X1,..., Xy) we have of(X) = AZX.
@ KMS condition:

5

R

=
I

(Pa_i(X;)) = ¢(P[AX]))
©(PXj) = ¢(0i(X;)P) = ([A"' X];P).
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o Z:=C(Xy,....Xn) C M

«Or < Fr «=>» .



Preliminaries Banach algebras and norms

] ,@Z:C<X1,...,XN>CM.
@ Can write each P € & as

deg(P) deg(P)
P=Y > ci)Xj= Y m(P), c({ecC
n=0 U|:n n=0
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Preliminaries Banach algebras and norms

] ,@Z:C<X1,...,XN>CM.
@ Can write each P € & as

deg(P) deg(P)
P=2 > ciX=> m(P), cl)eC
n=0 |j|=n n=0
@ For R>0
deg(P)
IPllr:==> > Il IR”—ZHM )Ir;
n=0|j|=n

defines a Banach norm on £2.
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Preliminaries Banach algebras and norms

,@Z:C<X1,...,XN>CM.

Can write each P € & as

deg(P) deg(P)

P=3 D ciXi= ) m(P)

n=0|j|=n n=0

For R >0
deg(P)
IPle:= Y >l IR”—ZHM
n=0|jl=n

defines a Banach norm on £2.

PR — lllr
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Preliminaries Banach algebras and norms

,@Z:C<X1,...,XN>CM.
Can write each P €¢ & as

deg(P) deg(P)
P=2 D c)X=>_ m(P)
n=0 |j|=n n=0
For R >0
deg(P)
IPllr:==> > Il IR”—ZHM
n=0|j|=n

defines a Banach norm on £2.
PR — lllr
If R >2>|Xj||, then 2(R) c M.
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o Zy={Pec Z:0i(P)=P}=M,NZ.

«Or «Fr «=>» = = A



Preliminaries Banach algebras and norms

o Z,={PecP:0i(P)=P}=M,NZ.
@ Define p: & — & on monomials by

J'nfl'

Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 10 / 38



Preliminaries Banach algebras and norms

o Z,={PecP:0i(P)=P}=M,NZ.
@ Define p: & — & on monomials by
p(){/ o Xln) = O-*i()g'n)Xil o X

J'nfl'

e We call p*(P) for k € Z a o-cyclic rearrangement of P.
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Preliminaries Banach algebras and norms

o Z,={PecP:0i(P)=P}=M,NZ.
@ Define p: & — & on monomials by

p(Xj, -+ X)) = o—i(Xj,) Xip -+ Xj,_,.

e We call p*(P) for k € Z a o-cyclic rearrangement of P.

@ Define

deg(P)

Pllro = supHpk”ﬂ P H ,
IPllr,o ;) sup (ma(P))]|

is a Banach norm on 2finite = {p ¢ . ||P||g, < oc}.
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Preliminaries Banach algebras and norms

Po={Pec P:0i(P)=P}=M,NZ.
Define p: & — & on monomials by

p(Xj, -+ X;,) = o—i(X;,) Xy -+ X

J'nfl'
We call p*(P) for k € Z a o-cyclic rearrangement of P.
Define

deg(P)

_ kn
Ro = ;) :nuepZHp (wn(P))HR,

1P|

is a Banach norm on 2finite = {p ¢ . ||P||g, < oc}.
P, C Phinite in fact |P||ro < ||A%8P)~1||P|g.
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Preliminaries Banach algebras and norms

Po={Pec P:0i(P)=P}=M,NZ.
Define p: & — & on monomials by

p(Xj, -+ X;,) = o—i(X;,) Xy -+ X

J'nfl'
We call p*(P) for k € Z a o-cyclic rearrangement of P.
Define

deg(P)

_ kn
Ro = ;) :nuepZHp (wn(P))HR,

1P|

is a Banach norm on Z2finite — (PeP:|P|ro < o}
P, C Phinite in fact |P||ro < ||A%8P)~1||P|g.
gp(R,0) :WII'HR,U
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Preliminaries Banach algebras and norms

o We let ﬁg?) and WS(OR’U) denote the elements of the respective
algebras which are fixed by o;.
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Preliminaries Banach algebras and norms

o We let ﬁg?) and 95;’0) denote the elements of the respective
algebras which are fixed by o;.

o Let #%7) = {P: 2(R9): p(P) = P} be the a-cyclically symmetric
elements.
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Preliminaries Banach algebras and norms

o We let 9&,’?) and ;@&R’U) denote the elements of the respective
algebras which are fixed by o;.

o Let #%7) = = {P: 2(R7). p(P) = P} be the o-cyclically symmetric
elements

e On ( ) and ( ) we use the max-norm, which we still
denote || - ||z and || - HRU
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Preliminaries Differential operators

@ Let;: & — F ® P be Voiculescu's free difference quotients,
defined by 6;(Xk) = dj—«x1 ® 1 and the Leibniz rule.
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Preliminaries Differential operators

@ Let;: & — F ® P be Voiculescu's free difference quotients,
defined by 6;(Xk) = dj—«x1 ® 1 and the Leibniz rule.
e Conventions on & ® Z°P:
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Preliminaries Differential operators

@ Let;: & — F ® P be Voiculescu's free difference quotients,
defined by 6;(Xk) = dj—«x1 ® 1 and the Leibniz rule.
e Conventions on & ® Z°P:

e Suppress “o" notation: a® b° — a® b
e a® b#c®d=(ac)® (db)
e a® b#c=ach, m(a® b) = ab
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Preliminaries Differential operators

@ Let;: & — F ® P be Voiculescu's free difference quotients,
defined by 6;(Xk) = dj—«x1 ® 1 and the Leibniz rule.

e Conventions on & ® Z°P:

Suppress “o" notation: a® b° — a® b

]

e a® b#c®d=(ac)® (db)

e a® b#c = ach, m(a® b) = ab
o (a® b)* = a* ® b*

o (a@b) = b*®a*

e (a®@b)*=b®a
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Preliminaries Differential operators

@ Let;: & — F ® P be Voiculescu's free difference quotients,
defined by 6;(Xk) = dj—«x1 ® 1 and the Leibniz rule.

e Conventions on & ® Z°P:

Suppress “o" notation: a® b° — a® b

a® b#c®d=(ac) ® (db)

a® b#c = acb, m(a® b) = ab

(a® b)* = a* ® b*

(a@b)l = b* ® a*

(a@b)°=b®a

@ Asa & — & bimodule: ¢-(a® b) = (ca) ® b and
(a®b)-c=a® (bc)
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Preliminaries Differential operators

e Forj, k€ {1,..., N} denote
2 (XiXj)
anp — | —2 | = .
jk 1+A P O\ Ak \j )

then @j = ayj, ajj = 1, and |aj| < 1.
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Preliminaries Differential operators

e Forj, k€ {1,..., N} denote
2 (XiXj)
anp — | —2 | = .
jk 1+A P O\ Ak \j )

then @j = ayj, ajj = 1, and |aj| < 1.

o For each j define o-difference quotient 8; = S h_; a0
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Preliminaries Differential operators

e Forj, k€ {1,..., N} denote

2
Qj = LJFA} = P(XXj),
j
then @i = oy, ayj =1, and |aj| < 1.
o For each j define o-difference quotient 8; = S h_; a0

e We consider this derivation because ¢(X;P) = ¢ @ p°P(9;(P)) for
Pe .
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Preliminaries Differential operators

e Forj, k€ {1,..., N} denote
2 (XiXj)
anp — | —2 | = .
jk 1+A P O\ Ak \j )

then @i = oy, ayj =1, and |aj| < 1.
o For each j define o-difference quotient 8; = S h_; a0

e We consider this derivation because ¢(X;P) = ¢ @ p°P(9;(P)) for
Pe .

o Define another derivation 9; so that 9;(P)" = 9;(P*).
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Preliminaries Differential operators

For j,k € {1,..., N} denote

2
Qj = LJFA} = P(XXj),
j
then @i = oy, ayj =1, and |aj| < 1.
For each j define o-difference quotient d; = S N_ ok

We consider this derivation because p(X;P) = ¢ ® ¢ (9;(P)) for
Pe .

Define another derivation 0; so that 9;(P)' = 9;(P*).

The modular group interacts with J; as follows:

(0’;@0’,‘)08','00',,':5]
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Preliminaries Differential operators

e For P=(Py,...,Py) € 2N define ZP, #,P € My(P @ P°P) by

[Z Plix =6kP; [ ZoPljx = OkP;
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Preliminaries Differential operators

e For P=(Py,...,Py) € 2N define ZP, #,P € My(P @ P°P) by
[7 Plix = 0P [7oPlik = 0kP;

o My(C) — Mn(Z @ Z°P) in the obvious way.
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Preliminaries Differential operators

e For P=(Py,...,Py) € 2N define ZP, #,P € My(P @ P°P) by

[Z Plix =6kP; [ ZoPljx = OkP;

o My(C) — Mn(Z @ Z°P) in the obvious way.

@ Examples:
[7 Xk = 0 Xj = Ok=jl @ 1 = [1]

[ZoX]jk = O0kXj = apl® LJFAL(
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Preliminaries Differential operators

e For P=(Py,...,Py) € 2N define ZP, #,P € My(P @ P°P) by

[Z Plix =6kP; [ ZoPljx = OkP;

o My(C) — Mn(Z @ Z°P) in the obvious way.

@ Examples:
[7 Xk = 0 Xj = Ok=jl @ 1 = [1]

2

@ A simple computation reveals ¢ P = /GP#/UX_l for all
P c (2(FHN
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Preliminaries Differential operators

@ For each j we define the j-th o-cyclic derivative J;: & — & by

n
Di(Xi -+ X)) = D g0 i( Xy -+ X)Xy -+ Xy
=1

or Zj=mooo(l®o_;)od.
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Preliminaries Differential operators

@ For each j we define the j-th o-cyclic derivative J;: & — & by
n
Di(Xi -+ X)) = D g0 i( Xy -+ X)Xy -+ Xy
I=1

or I = mo<>o(1®0_,-)05j.
e We define the o-cyclic gradient by 2P = (2P, ..., 9yP) € 2N for
PeZ.
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Preliminaries Differential operators

@ For each j we define the j-th o-cyclic derivative J;: & — & by
n
‘@j(Xkl e an) = Z ajkla_i(Xkl+1 o an)Xkl e Xk/,lv
I=1
or I = mo<>o(1®0_,-)05j.

e We define the o-cyclic gradient by 2P = (2P, ..., 9yP) € 2N for
PeZ.

@ Example:
1 N 1+A (R,0)
V = — E— [ CS’.U
0 5 E [ 5 :| . Xk)(, € P
Jk=1 J

then 2V = (Xl,...,XN) = X.
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Preliminaries Differential operators

@ For each j we define the j-th o-cyclic derivative J;: & — & by
n
‘@j(Xkl e an) = Z ajkla_i(XkI+1 o an)Xkl e Xk/,lv
I=1
or I = mo<>o(1®0_,-)05j.

e We define the o-cyclic gradient by 2P = (2P, ..., 9yP) € 2N for
PeZ.

@ Example:
1 N 1+A (R,0)
V = — E— [ CS’.U
0 5 E [ 5 :| . Xk)(, € P
Jk=1 J

then 2V = (Xl,...,XN) = X.
o Can also define Z; so that (Z;P)* = 7;(P*).
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e

ies  Schwii Dyson equation

8

o Given Ve 2R e say that a state 1) on W*(Xq,...,Xy)
satisfies the Schwinger-Dyson equation with potential V if

W(DVH#P) = @ YP @ Te( 7,P) VP e 2P,

in which case we call v the free Gibbs state with potential V/, and
may denote it py.
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e

ies  Schwinger-Dyson equation

o Given Ve 2R e say that a state 1) on W*(Xq,...,Xy)
satisfies the Schwinger-Dyson equation with potential V if

W(DVH#P) = @ YP @ Te( 7,P) VP e 2P,

in which case we call v the free Gibbs state with potential V/, and
may denote it py.

@ The state ¢y is unique provided |V — Vg||r,s is small enough.
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e

ies  Schwii Dyson equation

8

o Given Ve 2R e say that a state 1) on W*(Xq,...,Xy)

satisfies the Schwinger-Dyson equation with potential V if
Y(DV#P) = @ P @ Tr( foP) VP e 2,

in which case we call v the free Gibbs state with potential V/, and
may denote it py.

@ The state ¢y is unique provided |V — Vg||r,s is small enough.

@ The vacuum vector state ¢ = py;.
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e

ies  Schwii Dyson equation

8

Given V € 289 e say that a state 1) on W*(Xq,...,Xy)

satisfies the Schwinger-Dyson equation with potential V if
Y(DV#P) = @ P @ Tr( foP) VP e 2,

in which case we call v the free Gibbs state with potential V/, and
may denote it py.

The state ¢y is unique provided ||V — V|| is small enough.
The vacuum vector state ¢ = ¢\.

Consequently, X = _#7(1), where 1 € My(Z @ &7°P) is the identity
matrix.
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e

Dyson equation

8

@ Idea is to suppose the law of Z = (Z1,...,2Zn) C (L, ) is the free
Gibbs state with potential V = Vo + W: ¥z = py.
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ies  Schwii Dyson equation

8

@ Idea is to suppose the law of Z = (Z1,...,2Zn) C (L, ) is the free
Gibbs state with potential V = Vo + W: ¥z = py.

@ By exploiting the Schwinger-Dyson equation, we will construct
Y =(Y1,..., Yn) C (M, ) of the form Y; = X; + f; whose law
induced by ¢ is also the free Gibbs state with potential V.
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e

ies  Schwinger-Dyson equation

@ Idea is to suppose the law of Z = (Z1,...,2Zn) C (L, ) is the free
Gibbs state with potential V = Vo + W: ¥z = py.

@ By exploiting the Schwinger-Dyson equation, we will construct
Y =(Y1,..., Yn) C (M, ) of the form Y; = X; + f; whose law
induced by ¢ is also the free Gibbs state with potential V.

@ Provided ||W||g,, is small enough, the free Gibbs state with potential
Vo + W will be unique and therefore we will have transport from px

to V7.
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Construction of transport Equivalent forms of Schwinger-Dyson

o Suppose Y = (Yi,..., Yn) with Y; = X; + f; and f; € 2(R), assume
assume that ¢y satisfies the Schwinger-Dyson equation with
potential V = Vy 4+ W. Then

(Jo)y(1) = Dy (Vo(Y) + W(Y))
=Y +(2W)(Y) (1)
=X+ f+ (W)X +T1)
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Construction of transport Equivalent forms of Schwinger-Dyson

o Suppose Y = (Yi,..., Yn) with Y; = X; + f; and f; € 2(R), assume
assume that ¢y satisfies the Schwinger-Dyson equation with
potential V = Vy 4+ W. Then

(Jo)y(1) = Dy (Vo(Y) + W(Y))
=Y +(2W)(Y) (1)
=X+ f+ (W)X +T1)

@ Need to write the left-hand side in terms of X.

Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 18 / 38



Construction of transport Equivalent forms of Schwinger-Dyson

@ Using a change of variables argument, the Schwinger-Dyson equation
(1) is equivalent to

F5o(l®oj) <1+18> =X+ f+ (W)X + 1), (2)

where B = /Uf#/UX_l.
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Construction of transport Equivalent forms of Schwinger-Dyson

@ Using a change of variables argument, the Schwinger-Dyson equation
(1) is equivalent to

F5o(l®oj) <1+18> =X+ f+ (W)X + 1), (2)

where B = /Uf#/UX_l

@ Using identities 1+X =1- 1+7x and 1+X
by 1+ B, (2) becomes

— Jso(l®oi)(B)—f
= @(W(X+f))+B#f+B#j;o(1®a,~)<

=x— and multiplying

1+X

[
+1W +|w
oy] oy]
N— " —
©

o) (;
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Construction of transport Equivalent forms of Schwinger-Dyson

Lemma 2.1

Let g = g* € @;R’U) and let f = Yg. Then for any m > —1 we have:

B# 75 0 (10 0;)(B™) = 77 0 (18 0;)(B™?) (4)
= m:—li—2@ [(p®1) o Tra—1 + (1 ® @) o Tra] (B™2)
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Construction of transport Equivalent forms of Schwinger-Dyson

Lemma 2.1

Let g = g* € @;R,a) and let f = Yg. Then for any m > —1 we have:

B# 75 0 (10 0;)(B™) = 77 0 (18 0;)(B™?) (4)
= m:—Li—2@ [(p®1) o Tra—1 + (1 ® @) o Tra] (B™2)

Proof.

We prove the equivalence weakly by taking inner products against

P € (2(R)N . Denote the left-hand side by E; and the right-hand side by
Er.
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I S g =elent: forms of Schwinger-Dyson
Proof of Lemma 21 (conti)
(P, B# Z;o(1® Ui)(B’"+1)><p

i
v

«O>» «Fr «Z» « .



Jk=1

o (P} Byt [ £ 0 (1@ ) (B™)],)

oGO NORUANMCH Eavivelent forms of Schwinger-Dyson
Proof of Lemma 2.1 (conti)
(P, B# 75 o(1®0,)(B™)),
N

n}
8]
i
it
it
N)
¥l
i)




Construction of transport Equivalent forms of Schwinger-Dyson

Proof of Lemma 2.1 (conti.)

(P, B# 75 0(1@0;)(B™),

N
= o (PF-By# [ 25 0 (L@ a)(B™Y)],)
j k=1
N
= o((ei@V)(BR#PF - [ 2o (1®0))(B™N)],)
j k=1
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Construction of transport Equivalent forms of Schwinger-Dyson

Proof of Lemma 2.1 (conti.)

(P, B#/;‘ o (1®01)(B™))

%)

Zso F- Byt [y o (L@0o))(B™H)],)

J k=1

N
e MACEDCALRPERCLICARIN
J,k=

)

= (1@ o) (B)#P, F5 o (1®ai)(B™)),
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Construction of transport Equivalent forms of Schwinger-Dyson

Proof of Lemma 2.1 (conti.)

(P, B#/;o(1®a,-)(3m+1)>

%)

Zso F- Byt [y o (L@0o))(B™H)],)

J k=1

N
= 3 o (i @ VB#P; - 22 0 (120)(B™)],)

Jyk=1

= ((1®o_)(B)#P, F5o(1®0)(B™)),
= ([7oX 1#0, (JoP#P, 750 (1@ 0)(B™)),

where 6; = 0; ® 0_;.
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Construction of transport Equivalent forms of Schwinger-Dyson

Proof of Lemma 2.1 (conti.)
Hence if ¢ = ¢ ® ¢°P ® Tr then
(P,EL), =(FoX T # I 6/ IO #PY, (L2 0))(B™T)),
</U (l®o;) (Bm+2)>¢'
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Construction of transport Equivalent forms of Schwinger-Dyson

Proof of Lemma 2.1 (conti.)
Hence if ¢ = ¢ ® ¢°P ® Tr then

(P,EL)y =( FeX 4 Fo{6i( Sl #P}, (1@ 01)(B™Y),,
—(JP,(1®01)(B™2)),, .

The “product rule” simplifies the right-hand side to simplify to

(P.E), = (@, FoX I #(100)(B™Y) |
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Construction of transport Equivalent forms of Schwinger-Dyson

Proof of Lemma 2.1 (conti.)
Hence if ¢ = ¢ ® ¢°P ® Tr then

(P,EL)y =( FeX 4 Fo{6i( Sl #P}, (1@ 01)(B™Y),,
—(JP,(1®01)(B™2)),, .

The “product rule” simplifies the right-hand side to simplify to

(P.E), = (@, FoX I #(100)(B™Y) |

where, if a® b ® c#1£ = (alb) ® c and a ® b ® c#2£ = a ® (b&c), then
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Construction of transport Equivalent forms of Schwinger-Dyson

Proof of Lemma 2.1 (conti.)
Hence if ¢ = ¢ ® ¢°P ® Tr then
(P,EL), =( IeX T Io 0i( JoF)# P}, (1@ 0i)(B™)),
~(FoP,(1®0;)(B™2)), .

The “product rule” simplifies the right-hand side to simplify to

(P.E), = (@, FoX I #(100)(B™Y) |

where, if a® b ® c#1£ = (alb) ® c and a ® b ® c#2£ = a ® (b&c), then

N
[QP1jk = (0k ®1) 0 67 0 9)(£))#2P + (1® D) 0 57 0 D)) #1 P,
=1
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SO we have

(EL, P), = §(QP# 2, X1 4B™H)




Construction of transport Equivalent forms of Schwinger-Dyson

Proof of Lemma 2.1 (conti.)

Next for u=1,...,m+ 2 let R, be the matrix will all zero entries except
[Ru]iuju =a,® bu.

v
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Construction of transport Equivalent forms of Schwinger-Dyson

Proof of Lemma 2.1 (conti.)

Next for u=1,...,m+ 2 let R, be the matrix will all zero entries except
[Rulij, = au® by. Let C = [A_l]ij,-1 Hm+26- and consider

u=1 %ju=iyt1
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Construction of transport Equivalent forms of Schwinger-Dyson

Proof of Lemma 2.1 (conti.)

Next for u=1,...,m+ 2 let R, be the matrix will all zero entries except
[Rulij, = au ® by. Let C =[A71]; .4 HT2+125'u:iu+1 and consider

> o(Pk(p ® D) Tra-1(Ry - - Riny2)Pi)
P
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Construction of transport Equivalent forms of Schwinger-Dyson

Proof of Lemma 2.1 (conti.)

Next for u=1,...,m+ 2 let R, be the matrix will all zero entries except
[Rulij, = au ® by. Let C =[A71]; .4 HZ:fc?'u:,-uﬂ and consider

> o(Pk(p ® D) Tra-1(Ry - - Riny2)Pi)
P

= Z Co(ar--- am+2)@(92k(bm+2 -+ b1)Py)
k
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Construction of transport Equivalent forms of Schwinger-Dyson

Proof of Lemma 2.1 (conti.)

Next for u=1,...,m+ 2 let R, be the matrix will all zero entries except
[Rulij, = au ® by. Let C =[A71]; .4 ]_[Z'If dj,=i,., and consider

> o(Pk(p ® D) Tra-1(Ry - - Riny2)Pi)
P

= Z Co(ar--- am+2)@(@k(bm+2 -+ b1)Py)
k

=Y Co(a1--- am+2)p(8i © O(bm2 - - b1)#Px)
P
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Construction of transport Equivalent forms of Schwinger-Dyson

Proof of Lemma 2.1 (conti.)

Next for u=1,...,m+ 2 let R, be the matrix will all zero entries except
[Rulij, = au ® by. Let C =[A71]; .4 Hm+2 8j,=i,., and consider

> o(Di(e @ 1)Tra-1(Ry -+ Reny2) Pi)
k = Zk: Co(ar -~ am+2) (D (b2 -+ - b1)Pk)
=" Cy(ar-+ ams2)p(87 © Ou(bmea - -~ br)#Px)
= Cp(0i(au" - amy2)ar - ay-1)

X @(by—1 -+ b10i(bmt2 - byt1) - 8i o Ok(by)#Pk)
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Construction of transport Equivalent forms of Schwinger-Dyson

Proof of Lemma 2.1 (conti.)

Next for u=1,...,m+ 2 let R, be the matrix will all zero entries except
[Rulij, = au ® by. Let C =[A71]; .4 Hm+2 8j,=i,., and consider

> o(Di(e @ 1)Tra-1(Ry -+ Reny2) Pi)
k = Zk: Co(ar -~ am+2) (D (b2 -+ - b1)Pk)
=" Cy(ar-+ ams2)p(87 © Ou(bmea - -~ br)#Px)
= Cp(0i(au" - amy2)ar - ay-1)

X @(bu—1---b10i(bmt2 - but1) - 6i 0 Ok(bu)#Px)
= Z (A,p)(Ru)(0 ® 0)(Rus1 -+ Rmy2)A "Ry Ry_1)
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Construction of transport Equivalent forms of Schwinger-Dyson

Proof of Lemma 2.1 (conti.)

Where for an arbitrary matrix O

[Awp)(O)jk =D 0i @ (8 0 0)([Oli)#2P.
/
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Construction of transport Equivalent forms of Schwinger-Dyson

Proof of Lemma 2.1 (conti.)

Where for an arbitrary matrix O

[Awp)(O)jk =D 0i @ (8 0 0)([Oli)#2P.
/

Replacing R, with B for each u and using (0; ® 0;)(B)A™! = A~1B turns
the previous equation into
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Construction of transport Equivalent forms of Schwinger-Dyson

Proof of Lemma 2.1 (conti.)

Where for an arbitrary matrix O

[A( Lk—ZU: ® (6i 0 0)([Oljk)#2P-

Replacing R, with B for each u and using (0; ® 0;)(B)A™! = A~1B turns
the previous equation into

> o(Pile ® 1) Tras (B™2)Py)
k

= ¢(Awp)(B)(oi @ o) (BTTT)ATIBUTY)
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Construction of transport Equivalent forms of Schwinger-Dyson

Proof of Lemma 2.1 (conti.)

Where for an arbitrary matrix O

[A( Lk—ZU: ® (6i 0 0)([Oljk)#2P-

Replacing R, with B for each u and using (0; ® 0;)(B)A™! = A~1B turns
the previous equation into

> o(Pile ® 1) Tras (B™2)Py)
k

= ¢(Awp)(B)(oi @ o) (BTTT)ATIBUTY)

= (m+2)¢(Aupy(B)A BT
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Construction of transport Equivalent forms of Schwinger-Dyson

Proof of Lemma 2.1 (conti.)

Where for an arbitrary matrix O

[A1,p)(O)jk = ZU: (6i 0 9)([Oljx)#2P-

Replacing R, with B for each u and using (0; ® 0;)(B)A™! = A~1B turns
the previous equation into

(2(p®1) Tra-(B™2),P)
= d(Awp)(B)(oi @ o) (BTT)ATIBUTY)

= (m+2)¢(Aupy(B)A BT
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Construction of transport Equivalent forms of Schwinger-Dyson

Proof of Lemma 2.1 (conti.)

Similarly,
(2(1© @) Tra(B™2), P) = (m+2)$(A o p)(B)AB™),
where

[A@2,p)(O)]jk = Z(&i 0 01) ® o—i([O]jx)#1P:.
I
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Construction of transport Equivalent forms of Schwinger-Dyson

Proof of Lemma 2.1 (conti.)

Similarly,
(2(1© @) Tra(B™2), P) = (m+2)$(A o p)(B)AB™),
where

(A2, (O)k =D (8i00) @ o i([O]j)#1Py.
I

To finish the proof we simply verify that
QF# Z, X7t = A(l,P)(B)A_l + A2,p)(B)A,

which follows from their definitions after decomposing the various

derivations as linear combinations of the free difference quotients dy.
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Construction of transport Equivalent forms of Schwinger-Dyson

Define
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Construction of transport Equivalent forms of Schwinger-Dyson

o Recall f =Yg, and B= g, f# 7,X 1= 7f. Set

Q(g) =[(1®¢)oTra+ (p@1)oTra-1](B — log(1+ B)),
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Construction of transport Equivalent forms of Schwinger-Dyson

@ Recall f = 9g, and B = /Uf#/JX_l = Jf. Set
Qlg)=[1®p)oTra+ (¢ ®1)oTra-1](B —log(l + B)),

@ Then by comparing power series the previous lemma implies

20) = 84570 050) (125) - S oee) (12g).
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Construction of transport Equivalent forms of Schwinger-Dyson

@ Recall f = 9g, and B = /Uf#/JX_l = Jf. Set
Qlg)=[1®p)oTra+ (¢ ®1)oTra-1](B —log(l + B)),

@ Then by comparing power series the previous lemma implies

20) = 84570 050) (125) - S oee) (12g).

Lemma 2.2
Assume f = 9g forg =g* € 325,"?’0) and || 7 7g||ro,r < 1. Then

equation (3) is equivalent to

(e ®1) 0 Tra-1 + (1@ @) o Tral(F Z8) — N g} (5)
= 9(W(X + 2g)) + 7Q(g) + (F 78)#Z¢
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Construction of transport Fixed point argument

Corollary 2.3

Let g € 27 and assume that lgllro < R?/2. Let S > R+ |gllr.0-
S)

Let S > R+ ||gllr,o and let W € 28). Assume lp(X)| < C(lJJJ for all j
and some Cy > 0 and furthermore that Co/R < 1/2. Let

1
Flg) = - W(X+2%g) - A I X" # 7} # 77
+[(1®p)o Tra+ (p®1) 0 Tra1]( 7 Z5g) — Q(Xg)
H ' f| (R,O’) (R,O‘)
Then F(g) is a well-defined function from Z¢s"" to Py 7.

In particular, if we fix0 < p <1 and R > 4./||Al|, then |W||rs < 3y
and Y2 [|6;(W)l(R+p)@n(Rep) < § imply that

R 0 O o p
£ = {g € 257 lgllro < £} 5 {g € PED: glro < £} = Eo

and is uniformly contractive with constant \ < % on E;.
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Construction of transport Fixed point argument

Define
1 Lil-1
S (X)) = T > "(X),
= n=0

and .¥(c) = c for c € C.

Brent Nelson (UCLA) Free monotone transport without a trace
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Construction of transport Fixed point argument

Define

lj|—1

7X) = \lep

and .¥(c) = c for c € C. Then . is a contraction from QSE,R’U) into
287,

Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013

30 / 38



Construction of transport Fixed point argument

Define

lj|—1

7X) = \lep

and .¥(c) = c for c € C. Then . is a contraction from QSE,R’U) into
257,
Denote

M=id—mo
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Construction of transport Fixed point argument

Proposition 2.4

Assume that for some R > 4./||A|| and some 0 < p <1,

W e %,’?p"’) C %ii") and that ||W||g, < 5y and

2 16 W)l(Rp)@n(R1p) < §. Then there exists g and g = L& such
that:

() &.g € 287
(ii) & satisfies § = ./TF(g) and g satisfies
1
Ng=9N|-W(X + 2g) — 5{/0X’1#@g}#9g — Q(g)

HI®@p)o Tra+ (p®1) o Tra1]( 7 Pg)

(iii) If W is self-adjoint, then so are g and g.
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N e g <= peintagument
Set 8o = W(Xi,...,Xn) € E1 and for each k € N, g := STF(8k_1).
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N e g <= peintagument
Set 8o = W(Xi,...,Xn) € E1 and for each k € N, g := STF(8k_1).
We have

F B4
E1 — E2 — E1,

it
-
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Construction of transport Fixed point argument

Proof.

Set go = W(Xq,...,Xn) € E1 and for each k € N, g := STF(8k_1).

We have
El E2 E17

so that {8k }ken is a sequence in E; with
18k — Bk-1llRs < 3llBk—1 — Bk—2lIR,0-
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Construction of transport Fixed point argument

Proof.

Set go = W(Xq,...,Xn) € E1 and for each k € N, g := STF(8k_1).

We have
El —> E2 E17

so that {8k }ken is a sequence in E; with

Hg—k — 8k-1llro < %||g—k_1 — 8k—2||r,s- Thus {gk} converges to some
g € 2R which is a fixed point of #TIF.

We note g # 0 since .TIF(0) = TI(W) = W # 0.
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Construction of transport Fixed point argument

Proof.

Set go = W(Xq,...,Xn) € E1 and for each k € N, g := STF(8k_1).

We have
-5 E g,

so that {8k }ken is a sequence in E; with

|8k — &k—1llR,0 < %||g—k_1 — 8k—2||r,s- Thus {gk} converges to some
g € 28 \which is a fixed point of #TIF.

We note g # 0 since .#TIF(0) = .TI(W) = W # 0.

Setting g = X g (so A g = &), yields (i) and (ii).
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Construction of transport Fixed point argument

Proof.

Set go = W(Xq,...,Xn) € E1 and for each k € N, g := STF(8k_1).
We have

F T
E1 — E2 — El,

so that {8k }ken is a sequence in E; with

|8k — &k—1llR,0 < %||g—k_1 — 8k—2||r,s- Thus {gk} converges to some

g € 28 \which is a fixed point of #TIF.

We note g # 0 since .#TIF(0) = .TI(W) = W # 0.

Setting g = X g (so A g = &), yields (i) and (ii).

If W is self adjoint then it follows that .ZTIF(h)* = .ZT1F(h) for h = h*
and hence the sequence {8} is self-adjoint.

O
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Construction of transport Isomorphism results

Theorem 2.5

Let R > R > 4./||A||. Then there exists a constant C > 0 depending only
on R, R, and N so that whenever W = W* € @( ?) satisfies
|W|lgi110 < C, there exists f € 2(R) which satisfies equation (2). In
addition, f = 9g for g € 2R%)  The solution f = fw satisfies

lfwllr = 0 as [W|r410 = 0.
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Construction of transport Isomorphism results

Theorem 2.6

Let v be a free quasi-free state corresponding to A, and let
Xi,...,Xn € (M, ) be self-adjiont elements whose law px is the unique

Gibbs law with potential V. Let R' > R > 4./||A||. Then there exists
C > 0 depending only on R, R', and N so that whenever

W = w* € 2R 1) gatisfies |W||g41,0 < C, there exists G € Ro)
so that:

we set Y; = ;G then Y1,..., YN € as the law py/, wit
1) If Y; = ;G then Y, Yy € 2KR) has the law oy, with
V=V+ W,

(2) X; = H;(Y1,..., Yn) for some H; € 2(R);
3) if R" > Ry\/||Al| then (0, ® 1)( #-2G) > 0.
In particular, there are state-preserving isomorphisms

C*(¢v) = T(Hg, Ur), W*(¢v) = T(Hg, Ur)".
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Application to g-deformed Araki-Woods factors

o Let Mg =T4(Hr, Ut)", so that M is generated by Z; = sq(ej).
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Application to g-deformed Araki-Woods factors

o Let Mg =T4(Hr, Ut)", so that M is generated by Z; = sq(ej).
q"P, € HS(F4(#)), where P, is the projection onto

o Let=,=>""",
vectors of tensor length n.
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Application to g-deformed Araki-Woods factors

o Let Mg =T4(Hr, Ut)", so that M is generated by Z; = sq(ej).

o Let =, =571 q"Py € HS(Fq(H)), where P, is the projection onto
vectors of tensor length n.

o Can identify L2(Mq@MgP) with HS(F4(H)) via
a® bo%P — (bQ, - Q) aQd. For example 1 ® 1° — Py.
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Application to g-deformed Araki-Woods factors

o Let Mg =T4(Hr, Ut)", so that M is generated by Z; = sq(ej).

o Let =, =377 q"Pn € HS(F4(H)), where P, is the projection onto
vectors of tensor length n.

o Can identify L2(Mq@MgP) with HS(F4(H)) via
a® bo%P — (bQ, - Q) aQd. For example 1 ® 1° — Py.

o Define 9" (Zy) = ay=q, then 0% = 8; and 8\ (P) = 9;(P)#=4
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Application to g-deformed Araki-Woods factors

Let Mg = I4(Hr, Ut)", so that My is generated by Z; = s4(e)).

Let =g = 020 q"Pn € HS(Fq(H)), where Py, is the projection onto
vectors of tensor length n.

Can identify L2(Mq@MgP) with HS(F4(H)) via
a® bo%P — (bQ, - Q) aQd. For example 1 ® 1° — Py.

Define 0} (Z) = =, then 9" = 9; and 9\ (P) = d;(P)#=,q
P(Z;P) = 0 @ pP(0\V(P)) for P € 2(Z).
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Application to g-deformed Araki-Woods factors

Let Mg = I4(Hr, Ut)", so that My is generated by Z; = s4(e)).

Let =4 = > 72 q"Pn € HS(Fq(H)), where P, is the projection onto
vectors of tensor length n.

Can identify L2(Mq@MgP) with HS(F4(H)) via

a® bo%P — (bQ, - Q) aQd. For example 1 ® 1° — Py.

Define 0} (Z) = =, then 9" = 9; and 9\ (P) = d;(P)#=,q
P(Z;P) = 0 @ pP(0\V(P)) for P € 2(Z).

But we need & € L?(Mg, ¢) such that p(&P) = p @ ¢°P(9;(P)) so
that we can satisfy the Scwhinger-Dyson equation.
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Application to g-deformed Araki-Woods factors

Let Mg = I4(Hr, Ut)", so that My is generated by Z; = s4(e)).

Let =4 = > 72 q"Pn € HS(Fq(H)), where P, is the projection onto
vectors of tensor length n.

Can identify L2(Mq@MgP) with HS(F4(H)) via

a® bo%P — (bQ, - Q) aQd. For example 1 ® 1° — Py.

. —_ 0 —_
Define 8}(1)(2;() = =g, then 8} ) = 0j and 8}q)(P) = 0j(P)#=4
P(Z;P) = 0 @ pP(0\V(P)) for P € 2(Z).

But we need & € L?(Mg, ¢) such that p(&P) = p @ ¢°P(9;(P)) so
that we can satisfy the Scwhinger-Dyson equation.

&; are called the conjugate variables of Z1,..., Zy with respect to
d1,...,0n and in fact are merely 97 (1 ® 1).
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Application to g-deformed Araki-Woods factors

Let Mg = I4(Hr, Ut)", so that My is generated by Z; = s4(e)).
Let =g = 020 q"Pn € HS(Fq(H)), where Py, is the projection onto
vectors of tensor length n.

Can identify L2(Mq@MgP) with HS(F4(H)) via
a® bo%P — (bQ, - Q) aQd. For example 1 ® 1° — Py.

Define 0} (Z) = =, then 9" = 9; and 9\ (P) = d;(P)#=,q
P(Z;P) = 0 @ pP(0\V(P)) for P € 2(Z).

But we need & € L?(Mg, ¢) such that p(&P) = p @ ¢°P(9;(P)) so
that we can satisfy the Scwhinger-Dyson equation.

&; are called the conjugate variables of Z1,..., Zy with respect to
d1,...,0n and in fact are merely 97 (1 ® 1).

@ Do not necessarily exist, but for small enough |g| they do with
éj = 8]((])* o 6',,'( [:_1]*).

—q
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Application to g-deformed Araki-Woods factors

@ Define

N N

1+ A 1 1+A

V=% E [2]k§kzj VOZE_E [2]'2;(2],
Jik=1 J Jik=1

and let W =V — V.
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Application to g-deformed Araki-Woods factors
@ Define
N N
1+A 1 1+A
V=% Z [2 } . 4 Vo = 5 Z [2] 2k,
Jik=1 J Jisk=1

and let W =V — V.
@ Then 7V =¢; and so the vacuum state ¢ satisfies the
Schwinger-Dyson equation with potential V:

p(ZzV#P) = ¢ © 9*((F5)z(P)).
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Application to g-deformed Araki-Woods factors
@ Define
N N
1+A 1 1+A
V=% Z [2 } . 4 Vo = 5 Z [2] 2k,
Jik=1 J Jisk=1

and let W =V — V.
@ Then 7V =¢; and so the vacuum state ¢ satisfies the
Schwinger-Dyson equation with potential V:

p(ZzV#P) = ¢ © 9*((F5)z(P)).

@ So to show M = My = Mg, suffices to show ||W| g, can be made
small.
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Application to g-deformed Araki-Woods factors

@ Define
N N
1+A 1 1+ A
V=X E —_— Z; Vo == g — | ZZ;
; [ 2 ]kfkj ° 2. [ 2 ]'kkj’
Jrk=1 J Jk=1 J

and let W =V — V.
@ Then 7V =¢; and so the vacuum state ¢ satisfies the
Schwinger-Dyson equation with potential V:

p(ZzV#P) = ¢ © 9*((F5)z(P)).

@ So to show M = My = Mg, suffices to show ||W| g, can be made
small.

e Turns out it suffices to show [|(0; ® 1)(Z;') —1® 1||re,r can be
made small.
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Application to g-deformed Araki-Woods factors

Define
N N
1+A 1 1+A
V==%t E —_— Z; Vo= E —— | ZkZ;
: [ 2 ]kgkl T2 [ 2 ]'kkj’
Jrk=1 J Jk=1 J

and let W =V — V.
Then 27V = §; and so the vacuum state ¢ satisfies the
Schwinger-Dyson equation with potential V:

p(ZzV#P) = ¢ © 9*((F5)z(P)).

So to show M = My = My, suffices to show ||W| g, can be made
small.

Turns out it suffices to show [[(o; @ 1)(Z;1) — 1 ® 1||rg, r can be
made small.

By adapting the estimates of Dabrowski in [1], can show this quantity
tends to zero as |q| — 0.
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Application to g-deformed Araki-Woods factors

Theorem 3.1

For Hr finite dimensional, then there exists ¢ > 0 depending on N such
that |q| < € implies

rq(HR, Ut) = ro(HR, Ut) and rq(HR, Ut)” = FO(HR, Ut)”.

In particular, if G is the multiplicative subgroup of R generated by the
spectrum of A then

Iy if G = RX
Fo(Hg, Ur)" is a factor of type { Iy, if G =X, 0 <A< 1
I ifG = {1},

Moreover T q(Hg, Ur)" is full.
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