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Preliminaries Free Probability

Let (M, ϕ) be a von Neumann algebra with a faithful state:
non-commutative probability space.

Elements X ∈ M are non-commutative random variables.

Law of X , ϕX : C[t] 3 p(t) 7→ ϕ(p(X )).

For an N-tuple X = (X1, . . . ,XN), ϕX :
C 〈t1, . . . , tN〉 3 p(t1, . . . , tN) 7→ ϕ(p(X1, . . . ,XN)).

All random variables in this talk will be self-adjoint and
non-commutative.
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Preliminaries Transport

Let X = (X1, . . . ,XN) ⊂ (M, ϕ) and Z = (Z1, . . . ,ZN) ⊂ (L, ψ).

Transport from ϕX to ψZ is Y = (Y1, . . . ,YN) ⊂W ∗(X1, . . . ,XN) so
that

ϕ(p(Y1, . . . ,YN)) = ψ(p(Z1, . . . ,ZN)) ∀p ∈ C 〈t1, . . . , tN〉 ;

that is, ψZ = ϕY .

Implies (W ∗(Y1, . . . ,YN), ϕ) ∼= (W ∗(Z1, . . . ,ZN), ψ).

And there is a state-preserving embedding of W ∗(Z1, . . . ,ZN) into
W ∗(X1, . . . ,XN).
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Preliminaries Setup

Let HR = span{e1, . . . , eN}, a real Hilbert space with 〈·, ·〉, complex
linear in the second coordinate.

Let {Ut : t ∈ R} be a one parameter family of unitaries and let A be
their generator: Ait = Ut .

Can assume A = diag{A1, . . . ,AL, 1 . . . , 1} with

Ak =
1

2

(
λk + λ−1

k −i(λk − λ−1
k )

i(λk − λ−1
k ) λk + λ−1

k

)
∀k = 1, . . . , L

Then spectrum(A) = {1, λ±1
1 , . . . , λ±1

L }, AT = A−1,
(Ait)∗ = (Ait)T = A−it , and

N∑
j=1

|[A]ij | ≤ max{1, λ±1
1 , . . . , λ±1

L } ≤ ‖A‖ ∀i = 1, . . . ,N.
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Preliminaries Setup

Let HC = HR + iHR and define

〈x , y〉U =

〈
2

1 + A−1
x , y

〉
, x , y ∈ HC.

Let H = HC
‖·‖U .

The q-Fock space Fq(H) is the completion of CΩ⊕
⊕∞

n=1H⊗n with
respect to the inner product

〈f1 ⊗ · · · ⊗ fn, g1 ⊗ · · · ⊗ gm〉U,q
= δn=m

∑
π∈Sn

qi(π)
〈
f1, gπ(1)

〉
U
· · ·
〈
fn, gπ(n)

〉
U

In particular, F0(H) is the usual Fock space F(H).
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Preliminaries Setup

For f ∈ H we densely define the left q-creation operator
lq(f ) ∈ B(Fq(H)) by

lq(f )Ω = f

lq(f )g1 ⊗ · · · ⊗ gn = f ⊗ g1 ⊗ · · · gn

Its adjoint, the left q-annihilation operator, lq(f )∗ is defined densely
by

lq(f )∗Ω = 0

lq(f )∗g1 ⊗ · · · ⊗ gn =
n∑

k=1

qk−1 〈f , gk〉U g1 ⊗ · · · ⊗ ĝk ⊗ · · · ⊗ gn

We let sq(f ) = lq(f ) + lq(f )∗, and
Γq(HR,Ut)′′ = W ∗(sq(f ) : f ∈ HR).
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Preliminaries Setup

Ω is cyclic and separating for Γq(HR,Ut)′′ and hence the vector state
ϕ(·) = 〈Ω, · Ω〉U,q is a faithful, non-degenerate state (free quasi-free
state

Throughout, M shall denote Γ0(HR,Ut)′′ = W ∗(X1, . . . ,XN), with
Xj := s0(ej ).

With respect to the vacuum vector state ϕ, the Xj are centered
semicircular random variables of variance 1, but aren’t free unless
Ut = id .

Application of result: for small values of |q|, Γq(HR,Ut)′′ is
isomorphic to M.
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Preliminaries Tomita-Takesaki theory

Modular group: σϕz (Xj ) =
∑N

k=1[Aiz ]jk Xk for z ∈ C

Using the vector notation X = (X1, . . . ,XN) we have σϕz (X ) = Aiz X .

KMS condition:

ϕ(Xj P) = ϕ(Pσ−i (Xj )) = ϕ(P[AX ]j )

ϕ(PXj ) = ϕ(σi (Xj )P) = ϕ([A−1X ]j P).
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Preliminaries Banach algebras and norms

P := C 〈X1, . . . ,XN〉 ⊂ M.

Can write each P ∈P as

P =

deg(P)∑
n=0

∑
|j |=n

c(j)Xj =

deg(P)∑
n=0

πn(P), c(j) ∈ C

For R > 0

‖P‖R :=

deg(P)∑
n=0

∑
|j |=n

|c(j)|Rn =
∑

n

‖πn(P)‖R ,

defines a Banach norm on P.

P(R) = P
‖·‖R

If R ≥ 2 ≥ ‖Xj‖, then P(R) ⊂ M.
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Preliminaries Banach algebras and norms

Pϕ = {P ∈P : σi (P) = P} = Mϕ ∩P.

Define ρ : P →P on monomials by

ρ(Xj1 · · ·Xjn ) = σ−i (Xjn )Xi1 · · ·Xjn−1 .

We call ρk(P) for k ∈ Z a σ-cyclic rearrangement of P.

Define

‖P‖R,σ =

deg(P)∑
n=0

sup
kn∈Z

∥∥∥ρkn (πn(P))
∥∥∥

R
,

is a Banach norm on Pfinite = {P ∈P : ‖P‖R,σ <∞}.
Pϕ ⊂Pfinite , in fact ‖P‖R,σ ≤ ‖A‖deg(P)−1‖P‖R .

P(R,σ) = Pfinite
‖·‖R,σ
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Preliminaries Banach algebras and norms

We let P
(R)
ϕ and P

(R,σ)
ϕ denote the elements of the respective

algebras which are fixed by σi .

Let P
(R,σ)
c.s. = {P : P(R,σ) : ρ(P) = P} be the σ-cyclically symmetric

elements.

On
(
P(R)

)N
and

(
P(R,σ)

)N
we use the max-norm, which we still

denote ‖ · ‖R and ‖ · ‖R,σ.
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Preliminaries Differential operators

Let δj : P →P ⊗Pop be Voiculescu’s free difference quotients,
defined by δj (Xk ) = δj=k 1⊗ 1 and the Leibniz rule.

Conventions on P ⊗Pop:

Suppress “◦” notation: a⊗ b◦ 7→ a⊗ b
a⊗ b#c ⊗ d = (ac)⊗ (db)
a⊗ b#c = acb, m(a⊗ b) = ab
(a⊗ b)∗ = a∗ ⊗ b∗

(a⊗ b)† = b∗ ⊗ a∗

(a⊗ b)� = b ⊗ a

As a P −P bimodule: c · (a⊗ b) = (ca)⊗ b and
(a⊗ b) · c = a⊗ (bc)
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Preliminaries Differential operators

For j , k ∈ {1, . . . ,N} denote

αjk =

[
2

1 + A

]
jk

= ϕ(Xk Xj ),

then αjk = αkj , αjj = 1, and |αjk | ≤ 1.

For each j define σ-difference quotient ∂j =
∑N

k=1 αkjδk

We consider this derivation because ϕ(Xj P) = ϕ⊗ ϕop(∂j (P)) for
P ∈P.

Define another derivation ∂̄j so that ∂j (P)† = ∂̄j (P∗).

The modular group interacts with ∂j as follows:

(σi ⊗ σi ) ◦ ∂j ◦ σ−i = ∂̄j
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Preliminaries Differential operators

For P = (P1, . . . ,PN) ∈PN define J P,JσP ∈ MN(P ⊗Pop) by

[J P]jk = δk Pj [JσP]jk = ∂k Pj

MN(C) ↪→ MN(P ⊗Pop) in the obvious way.

Examples:

[J X ]jk = δk Xj = δk=j 1⊗ 1 = [1]jk

[JσX ]jk = ∂kXj = αjk 1⊗ 1 =

[
2

1 + A

]
jk

A simple computation reveals J P = JσP#JσX−1 for all
P ∈ (P(R))N .
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Preliminaries Differential operators

For each j we define the j -th σ-cyclic derivative Dj : P →P by

Dj (Xk1 · · ·Xkn ) =
n∑

l=1

αjkl
σ−i (Xkl+1

· · ·Xkn )Xk1 · · ·Xkl−1
,

or Dj = m ◦ � ◦ (1⊗ σ−i ) ◦ ∂̄j .

We define the σ-cyclic gradient by DP = (D1P, . . . ,DNP) ∈PN for
P ∈P.

Example:

V0 =
1

2

N∑
j ,k=1

[
1 + A

2

]
jk

Xk Xj ∈P
(R,σ)
c.s.

then DV0 = (X1, . . . ,XN) = X .

Can also define D̄j so that (Dj P)∗ = D̄j (P∗).
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Preliminaries Schwinger-Dyson equation

Given V ∈P
(R,σ)
c.s. , we say that a state ψ on W ∗(X1, . . . ,XN)

satisfies the Schwinger-Dyson equation with potential V if

ψ(DV #P) = ψ ⊗ ψop ⊗ Tr(JσP) ∀P ∈P(R),

in which case we call ψ the free Gibbs state with potential V , and
may denote it ϕV .

The state ϕV is unique provided ‖V − V0‖R,σ is small enough.

The vacuum vector state ϕ = ϕV0 .

Consequently, X = J ∗
σ (1), where 1 ∈ MN(P ⊗Pop) is the identity

matrix.
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Preliminaries Schwinger-Dyson equation

Idea is to suppose the law of Z = (Z1, . . . ,ZN) ⊂ (L, ψ) is the free
Gibbs state with potential V = V0 + W : ψZ = ϕV .

By exploiting the Schwinger-Dyson equation, we will construct
Y = (Y1, . . . ,YN) ⊂ (M, ϕ) of the form Yj = Xj + fj whose law
induced by ϕ is also the free Gibbs state with potential V .

Provided ‖W ‖R,σ is small enough, the free Gibbs state with potential
V0 + W will be unique and therefore we will have transport from ϕX

to ψZ .
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Construction of transport Equivalent forms of Schwinger-Dyson

Suppose Y = (Y1, . . . ,YN) with Yj = Xj + fj and fj ∈P(R), assume
assume that ϕY satisfies the Schwinger-Dyson equation with
potential V = V0 + W . Then

(Jσ)∗Y (1) = DY (V0(Y ) + W (Y ))

= Y + (DW )(Y ) (1)

= X + f + (DW )(X + f )

Need to write the left-hand side in terms of X .
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Construction of transport Equivalent forms of Schwinger-Dyson

Using a change of variables argument, the Schwinger-Dyson equation
(1) is equivalent to

J ∗
σ ◦ (1⊗ σi )

(
1

1 + B

)
= X + f + (DW )(X + f ), (2)

where B = Jσf #JσX−1.

Using identities 1
1+x = 1− x

1+x and x
1+x = x − x2

1+x and multiplying
by 1 + B, (2) becomes

−J ∗
σ ◦ (1⊗ σi )(B)− f

= D(W (X + f )) + B#f + B#J ∗
σ ◦ (1⊗ σi )

(
B

1 + B

)
(3)

−J ∗
σ ◦ (1⊗ σi )

(
B2

1 + B

)
,
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Construction of transport Equivalent forms of Schwinger-Dyson

Using a change of variables argument, the Schwinger-Dyson equation
(1) is equivalent to

J ∗
σ ◦ (1⊗ σi )

(
1

1 + B

)
= X + f + (DW )(X + f ), (2)

where B = Jσf #JσX−1.

Using identities 1
1+x = 1− x

1+x and x
1+x = x − x2

1+x and multiplying
by 1 + B, (2) becomes

−J ∗
σ ◦ (1⊗ σi )(B)− f

= D(W (X + f )) + B#f + B#J ∗
σ ◦ (1⊗ σi )

(
B

1 + B

)
(3)

−J ∗
σ ◦ (1⊗ σi )

(
B2

1 + B

)
,

Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 19 / 38



Construction of transport Equivalent forms of Schwinger-Dyson

Lemma 2.1

Let g = g∗ ∈P
(R,σ)
ϕ and let f = Dg. Then for any m ≥ −1 we have:

B#J ∗
σ ◦ (1⊗ σi )(Bm+1)−J ∗

σ ◦ (1⊗ σi )(Bm+2) (4)

=
1

m + 2
D [(ϕ⊗ 1) ◦ TrA−1 + (1⊗ ϕ) ◦ TrA] (Bm+2)

Proof.

We prove the equivalence weakly by taking inner products against
P ∈ (P(R))N . Denote the left-hand side by EL and the right-hand side by
ER .
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Construction of transport Equivalent forms of Schwinger-Dyson

Proof of Lemma 2.1 (conti.)

〈P, B#J ∗
σ ◦ (1⊗ σi )(Bm+1)

〉
ϕ

=
N∑

j ,k=1

ϕ
(
P∗j · Bjk #

[
J ∗

σ ◦ (1⊗ σi )(Bm+1)
]

k

)
=

N∑
j ,k=1

ϕ
(
(σi ⊗ 1)(B�jk )#P∗j ·

[
J ∗

σ ◦ (1⊗ σi )(Bm+1)
]

k

)
=
〈
(1⊗ σ−i )(B∗)#P,J ∗

σ ◦ (1⊗ σi )(Bm+1)
〉
ϕ

=
〈
[JσX−1#σ̂i (Jσf )]#P,J ∗

σ ◦ (1⊗ σi )(Bm+1)
〉
ϕ

where σ̂i = σi ⊗ σ−i .
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Construction of transport Equivalent forms of Schwinger-Dyson

Proof of Lemma 2.1 (conti.)

Hence if φ = ϕ⊗ ϕop ⊗ Tr then

〈P,EL〉ϕ =
〈
JσX−1#Jσ {σ̂i (Jσf )#P} , (1⊗ σi )(Bm+1)

〉
φ

−
〈
JσP, (1⊗ σi )(Bm+2)

〉
φ
.

The “product rule” simplifies the right-hand side to simplify to

〈P,EL〉ϕ =
〈

QP ,JσX−1#(1⊗ σi )(Bm+1)
〉
φ
,

where, if a⊗ b ⊗ c#1ξ = (aξb)⊗ c and a⊗ b ⊗ c#2ξ = a⊗ (bξc), then

[QP ]jk =
N∑

l=1

(∂k ⊗ 1) ◦ σ̂i ◦ ∂l (fj )#2Pl + (1⊗ ∂k) ◦ σ̂i ◦ ∂l (fj )#1Pl
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Construction of transport Equivalent forms of Schwinger-Dyson

Proof of Lemma 2.1 (conti.)

So we have

〈EL,P〉ϕ = φ(QP#JσX−1#Bm+1)
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Construction of transport Equivalent forms of Schwinger-Dyson

Proof of Lemma 2.1 (conti.)

Next for u = 1, . . . ,m + 2 let Ru be the matrix will all zero entries except
[Ru]iu ju = au ⊗ bu.

Let C = [A−1]jm+2i1

∏m+2
u=1 δju=iu+1 and consider∑

k

ϕ(D̄k(ϕ⊗ 1)TrA−1(R1 · · ·Rm+2)Pk )

=
∑

k

Cϕ(a1 · · · am+2)ϕ(D̄k(bm+2 · · · b1)Pk)

=
∑

k

Cϕ(a1 · · · am+2)ϕ(σ̂i ◦ ∂k (bm+2 · · · b1)#Pk )

=
∑
k,u

Cϕ(σi (au · · · am+2)a1 · · · au−1)

× ϕ(bu−1 · · · b1σi (bm+2 · · · bu+1) · σ̂i ◦ ∂k (bu)#Pk)

=
∑

u

φ(∆(1,P)(Ru)(σi ⊗ σi )(Ru+1 · · ·Rm+2)A−1R1 · · ·Ru−1)
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Construction of transport Equivalent forms of Schwinger-Dyson

Proof of Lemma 2.1 (conti.)

Where for an arbitrary matrix O

[∆(1,P)(O)]jk =
∑

l

σi ⊗ (σ̂i ◦ ∂l )([O]jk)#2Pl .

Replacing Ru with B for each u and using (σi ⊗ σi )(B)A−1 = A−1B turns
the previous equation into

=
∑

u

φ(∆(1,P)(B)(σi ⊗ σi )(Bm+2−u)A−1Bu−1)

= (m + 2)φ(∆(1,P)(B)A−1Bm+1)
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Construction of transport Equivalent forms of Schwinger-Dyson

Proof of Lemma 2.1 (conti.)

Similarly,〈
D(1⊗ ϕ)TrA(Bm+2),P

〉
ϕ

= (m + 2)φ(∆(2,P)(B)ABm+1),

where

[∆(2,P)(O)]jk =
∑

l

(σ̂i ◦ ∂l )⊗ σ−i ([O]jk)#1Pl .

To finish the proof we simply verify that

QP#JσX−1 = ∆(1,P)(B)A−1 + ∆(2,P)(B)A,

which follows from their definitions after decomposing the various
derivations as linear combinations of the free difference quotients δk .
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Construction of transport Equivalent forms of Schwinger-Dyson

Define

N (Xi ) = |i |Xi

Σ(Xi ) =
1

|i |
Xi
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Construction of transport Equivalent forms of Schwinger-Dyson

Recall f = Dg , and B = Jσf #JσX−1 = J f . Set

Q(g) = [(1⊗ ϕ) ◦ TrA + (ϕ⊗ 1) ◦ TrA−1 ](B − log(1 + B)),

Then by comparing power series the previous lemma implies

DQ(g) = B#J ∗
σ ◦ (1⊗ σ)

(
B

1 + B

)
−J ∗

σ ◦ (1⊗ σi )

(
B2

1 + B

)
.

Lemma 2.2

Assume f = Dg for g = g∗ ∈P
(R,σ)
ϕ and ‖J Dg‖R⊗πR < 1. Then

equation (3) is equivalent to

D{[(ϕ⊗ 1) ◦ TrA−1 + (1⊗ ϕ) ◦ TrA](J Dg)−N g} (5)

= D(W (X + Dg)) + DQ(g) + (J Dg)#Dg
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Construction of transport Fixed point argument

Corollary 2.3

Let g ∈P
(R,σ)
c.s. and assume that ‖g‖R,σ < R2/2. Let S ≥ R + ‖g‖R,σ.

Let S ≥ R + ‖g‖R,σ and let W ∈P
(S)
c.s.. Assume |ϕ(Xj )| ≤ C

|j |
0 for all j

and some C0 > 0 and furthermore that C0/R < 1/2. Let

F (g) =−W (X + DΣg)− 1

2
{JσX−1#DΣg}#DΣg

+ [(1⊗ ϕ) ◦ TrA + (ϕ⊗ 1) ◦ TrA−1 ](J DΣg)− Q(Σg)

Then F (g) is a well-defined function from P
(R,σ)
c.s. to P

(R,σ)
ϕ .

In particular, if we fix 0 < ρ ≤ 1 and R > 4
√
‖A‖, then ‖W ‖R,σ <

ρ
2N

and
∑

j ‖δj (W )‖(R+ρ)⊗π(R+ρ) <
1
8 imply that

E1 :=
{

g ∈P
(R,σ)
c.s. : ‖g‖R,σ <

ρ

N

}
F7→
{

g ∈P(R,σ)
ϕ : ‖g‖R,σ <

ρ

N

}
=: E2

and is uniformly contractive with constant λ ≤ 1
2 on E1.
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Construction of transport Fixed point argument

Define

S (Xj ) =
1

|j |

|j |−1∑
n=0

ρn(Xj ),

and S (c) = c for c ∈ C.

Then S is a contraction from P
(R,σ)
ϕ into

P
(R,σ)
c.s. .

Denote

Π = id − π0
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Construction of transport Fixed point argument

Proposition 2.4

Assume that for some R > 4
√
‖A‖ and some 0 < ρ ≤ 1,

W ∈P
(R+ρ,σ)
c.s. ⊂P

(R,σ)
c.s. and that ‖W ‖R,σ <

ρ
2N and∑

j ‖δj (W )‖(R+ρ)⊗π(R+ρ) <
1
8 . Then there exists ĝ and g = Σĝ such

that:

(i) ĝ , g ∈P
(R,σ)
c.s.

(ii) ĝ satisfies ĝ = S ΠF (ĝ) and g satisfies

N g = S Π

[
−W (X + Dg)− 1

2
{JσX−1#Dg}#Dg − Q(g)

+[(1⊗ ϕ) ◦ TrA + (ϕ⊗ 1) ◦ TrA−1 ](J Dg)

]
(iii) If W is self-adjoint, then so are ĝ and g.

Brent Nelson (UCLA) Free monotone transport without a trace October 30, 2013 31 / 38



Construction of transport Fixed point argument

Proof.

Set ĝ0 = W (X1, . . . ,XN) ∈ E1 and for each k ∈ N, ĝk := S ΠF (ĝk−1).

We have

E1
F−→ E2

S Π−→ E1,

so that {ĝk}k∈N is a sequence in E1 with
‖ĝk − ĝk−1‖R,σ ≤ 1

2‖ĝk−1 − ĝk−2‖R,σ. Thus {ĝk} converges to some

ĝ ∈P
(R,σ)
c.s. which is a fixed point of S ΠF .

We note ĝ 6= 0 since S ΠF (0) = S Π(W ) = W 6= 0.
Setting g = Σĝ (so N g = ĝ), yields (i) and (ii).
If W is self adjoint then it follows that S ΠF (h)∗ = S ΠF (h) for h = h∗

and hence the sequence {ĝk} is self-adjoint.
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Set ĝ0 = W (X1, . . . ,XN) ∈ E1 and for each k ∈ N, ĝk := S ΠF (ĝk−1).
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ĝ ∈P
(R,σ)
c.s. which is a fixed point of S ΠF .
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Setting g = Σĝ (so N g = ĝ), yields (i) and (ii).
If W is self adjoint then it follows that S ΠF (h)∗ = S ΠF (h) for h = h∗

and hence the sequence {ĝk} is self-adjoint.
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Construction of transport Isomorphism results

Theorem 2.5

Let R ′ > R > 4
√
‖A‖. Then there exists a constant C > 0 depending only

on R, R ′, and N so that whenever W = W ∗ ∈P
(R′,σ)
c.s. satisfies

‖W ‖R′+1,σ < C , there exists f ∈P(R) which satisfies equation (2). In

addition, f = Dg for g ∈P
(R,σ)
c.s. . The solution f = fW satisfies

‖fW ‖R → 0 as ‖W ‖R′+1,σ → 0.
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Construction of transport Isomorphism results

Theorem 2.6

Let ϕ be a free quasi-free state corresponding to A, and let
X1, . . . ,XN ∈ (M, ϕ) be self-adjiont elements whose law ϕX is the unique
Gibbs law with potential V0. Let R ′ > R > 4

√
‖A‖. Then there exists

C > 0 depending only on R, R ′, and N so that whenever

W = W ∗ ∈P
(R′+1,σ)
c.s. satisfies ‖W ‖R′+1,σ < C , there exists G ∈P

(R,σ)
c.s.

so that:

(1) If we set Yj = Dj G then Y1, . . . ,YN ∈P(R) has the law ϕV , with
V = V0 + W ;

(2) Xj = Hj (Y1, . . . ,YN) for some Hj ∈P(R);

(3) if R ′ > R
√
‖A‖ then (σi/2 ⊗ 1)(JσDG ) ≥ 0.

In particular, there are state-preserving isomorphisms

C ∗(ϕV ) ∼= Γ(HR,Ut), W ∗(ϕV ) ∼= Γ(HR,Ut)′′.
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Application to q-deformed Araki-Woods factors

Let Mq = Γq(HR,Ut)′′, so that Mq is generated by Zj = sq(ej ).

Let Ξq =
∑∞

n=0 qnPn ∈ HS(Fq(H)), where Pn is the projection onto
vectors of tensor length n.

Can identify L2(Mq⊗̄Mop
q ) with HS(Fq(H)) via

a⊗ bop 7→ 〈bΩ, · Ω〉 aΩ. For example 1⊗ 1◦ 7→ P0.

Define ∂
(q)
j (Zk ) = αkj Ξq, then ∂

(0)
j = ∂j and ∂

(q)
j (P) = ∂j (P)#Ξq

ϕ(Zj P) = ϕ⊗ ϕop(∂
(q)
j (P)) for P ∈P(Z ).

But we need ξj ∈ L2(Mq, ϕ) such that ϕ(ξj P) = ϕ⊗ ϕop(∂j (P)) so
that we can satisfy the Scwhinger-Dyson equation.

ξj are called the conjugate variables of Z1, . . . ,ZN with respect to
∂1, . . . , ∂N and in fact are merely ∂∗j (1⊗ 1).

Do not necessarily exist, but for small enough |q| they do with

ξj = ∂
(q)∗
j ◦ σ̂−i (

[
Ξ−1

q

]∗
).
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Application to q-deformed Araki-Woods factors

Define

V = Σ

 N∑
j ,k=1

[
1 + A

2

]
jk

ξk Zj

 V0 =
1

2

N∑
j ,k=1

[
1 + A

2

]
jk

Zk Zj ,

and let W = V − V0.

Then DZj
V = ξj and so the vacuum state ϕ satisfies the

Schwinger-Dyson equation with potential V :

ϕ(DZ V #P) = ϕ⊗ ϕop((Jσ)Z (P)).

So to show M = M0
∼= Mq, suffices to show ‖W ‖R,σ can be made

small.

Turns out it suffices to show ‖(σi ⊗ 1)(Ξ−1
q )− 1⊗ 1‖R⊗πR can be

made small.

By adapting the estimates of Dabrowski in [1], can show this quantity
tends to zero as |q| → 0.
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Application to q-deformed Araki-Woods factors

Theorem 3.1

For HR finite dimensional, then there exists ε > 0 depending on N such
that |q| < ε implies

Γq(HR,Ut) ∼= Γ0(HR,Ut) and Γq(HR,Ut)′′ ∼= Γ0(HR,Ut)′′.

In particular, if G is the multiplicative subgroup of R×+ generated by the
spectrum of A then

Γq(HR,Ut)′′ is a factor of type


III1 if G = R×+
IIIλ if G = λZ, 0 < λ < 1
II1 if G = {1}.

Moreover Γq(HR,Ut)′′ is full.
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